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Abstract. Compton profiles, polarizabilities and related functions of diamond and cubic boron
nitride have been investigated within the Hartree–Fock approximation and the density functional
theory, calculated within the local density approximation and generalized gradient approximation,
but without any explicit correlation correction for the Compton profiles. The correlation part
already included in the standard uncorrected density functional theory is deduced from the
comparison of the two types of calculation. The Compton profile and reciprocal-form-factor
anisotropies, polarizability, dielectric constant and energy loss function of the two compounds
are compared at the same level of accuracy. These properties are very close in spite of the rather
different chemical bonds due to the charge transfer occurring in cubic boron nitride and gaps.

1. Introduction

Since its synthesis in 1957 by Wentorf [1], cubic boron nitride (cBN) has attracted
particular attention because of its extraordinary properties of technological interest. The
electronic properties, due to its large band gap, have applications in modern microelectronic
devices working under high temperatures, whereas its mechanical properties make it
useful for protective coatings. It is used both as a powerful material for abrasive
processes and a sintered one when inserted in high-speed equipment for machining hardened
steels. Diamond and cBN are isoelectronic and isostructural (zinc-blende-type structure)
compounds but the space-group symmetry is changed from the centrosymmetricFd3m

group for diamond to the non-centrosymmetricF4̄3m one for cBN. As a consequence of
these similarities, diamond and cBN have been studied comparatively in detail from an
experimental point of view as well as by means of theoretical investigations. Concerning
their electronic structure, to which this paper is devoted via calculations of Compton profiles,
numerous studies on the x-ray diffraction, Compton scattering, charge-density distribution,
and total and cohesive energies of the ground state have already led to accurate and
homogeneous results. Experiments on diamond [2–5] and cBN [6–9] and calculations
performed on diamond [10–18] and cBN [19–26] either with the Hartree–Fock (HF) or the
Kohn–Sham (KS) equations have been used to determine an accurate description of their
electronic structure.

Ab initio calculations of the crystalline wave functions of diamond and cBN already
made by Dovesiet al [15, 21] and Orlandoet al [22] at the HF level only, with either a
minimal STO-3G basis set or a more extended 6-21G∗ set, are improved on in this work. In
fact, the linear combination of atomic orbitals (LCAO) self-consistent-field (SCF) method
applied to the periodic systems [27] and implemented in the program CRYSTAL [28],
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was available within the HF approximation. Recently, a new version of this program,
CRYSTAL 95 [29], has allowed us to benefit from important improvements and in particular
to use the density functional theory (DFT) formalism thanks to the resolution of the Kohn–
Sham (KS) one-electron equations at each step of the SCF process. In these conditions,
the charge and momentum densities obtained from the eigenvectors calculated at the HF
and KS levels can be compared, thus leading to the evaluation of a part of the correlation
effect. These improvements also allow us to establish more accurately properties such
as the polarizability which require knowledge of the gap and the conduction band. This
latter property, which is the linear response of an electronic system to the application of an
electric field, is a complex function for which the real and imaginary parts are related via
the Kramers–Kr̈onig relation [30, 31]. The dielectric constant which is the corresponding
macroscopic property is involved in basic experiments such as optical measurements of the
refractive index or reflectance [32] and electron energy loss spectroscopy (EELS) [33–35].
To calculate the polarizability and its related functions, the uncoupled Hartree–Fock (UCHF)
or uncoupled Kohn–Sham (UCKS) schemes already described [36] are used.

The paper is organized as follows. In section 2 the calculation of the crystalline wave
functions within the DFT formalism is briefly recalled and the atomic basis sets used are
reported. In section 3, the equations required for the calculations of the properties studied
are summarized. Section 4 reports calculations made at the HF and KS levels, and the part
of the electronic correlation effect included in standard uncorrected DFT is evaluated for
each property. The comparison with experiment and other calculations is also analysed.
Finally in section 5, the comparative behaviour of the Compton profiles, polarizabilities and
related functions for diamond and cBN are discussed in connection with the nature of the
chemical bonds and the gap and bandwidth values, and general conclusions are given in
section 6.

2. Details of the calculations of the wave function

The periodic LCAO-HF scheme [27] as implemented in the CRYSTAL 92 program [37] is
used. The accuracy of calculating the Coulomb and exchange series contributions to the
Fock operator is addressed by setting tight tolerances [28] for the evaluation of these series
(Sc = tm = 10−6 andSex = pgex = 10−6, andplex = 10−12). The shrinking factor defining
the reciprocal-space net in which the Fock matrix is diagonalized is 8 corresponding to 29
(diamond) and 43 (cBN) reciprocal-spacek-points. With these computational conditions,
the converged total energy is obtained with an accuracy of about 0.1 mHartree. For C, B
and N atoms, we used the all-electron gaussian basis sets (6-21G∗) given by Orlandoet al
[22] in the study of diamond and cBN semiconductors. The use of such basis sets is justified
since it allows us to compare the Compton profiles of diamond and cBN without including
basis set effects. Moreover, the quality is judged as sufficient since the calculations of the
Compton profiles for hexagonal BN [38] made with this basis set (B∗

1 in reference [38]) are
similar to those obtained with a more extended basis set (7-311G∗; B∗2 in reference [38]).
In order to compare our calculated properties more accurately with the experimental ones,
we have reoptimized the exponent (ξ ) of each outermost (3sp) shell with respect to the
experimental geometry (3.560̊A for diamond; 3.615Å for cBN). This process leads to the
following values:ξ(C) = 0.2242,ξ(B) = 0.1843 andξ(N) = 0.3132. A d-like polarization
function with the exponentξ = 0.8 was added to the basis set of each atom.

Parallel to the LCAO-HF method, we have been able to make LCAO-KS calculations
thanks to the recent extension of the CRYSTAL code to the DFT [39, 40]. This allows
a direct comparison between HF and DFT methods using the same code, the same basis
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sets and the same computational conditions. In this CRYSTAL code, the HF and KS one-
electron equations are solved self-consistently for a one-electron wave function, and the
corresponding electronic densityρ(r) is calculated:

ĤHF/KSϕ
k
i HF/KS = εki HF/KSϕ

k
i HF/KS (1)

ρHF/KS(r) =
∑
µ,ν,g

P
µ,ν,g
HF/KSχ

0∗
µ (r)χ

g
ν (r) (2)

whereϕki and εki are eigenvectors and eigenvalues,Pµ,ν,g is an element of the density
matrix, andχ0

µ andχgν are atomic orbitals at the origin and in theg-cells.
To summarize, in using the HF operator, the exchange part is calculated exactly

and the correlation part is omitted, whereas in using the KS operator, the exchange and
correlation parts are introduced into the Hamiltonian at different levels of approximation.
The exchange/correlation potential is represented as a linear combination of gaussian-type
functions and includes the translational periodicity of the crystal. Therefore, it is a basis
of the total symmetric irreducible representation of the space group. In this work, the KS
calculations lead to two levels of approximation:

(i) a local density approximation (LDA) scheme corresponding to the local exchange
potential of Dirac [41] and the local correlation potential using the Perdew–Zunger [42]
parametrization of Ceperley–Alder results [43];

(ii) a generalized gradient approximation (GGA) scheme corresponding to the use
of non-local exchange and correlation potentials of Becke [44] and Perdewet al [45],
respectively.

3. Methods of calculation of the Compton profiles and polarizabilities

3.1. Compton profiles

Within the impulse approximation in which the energy transfer to the recoil electrons must
greatly exceed their binding energy, the directional Compton profileJ (pz = q) is defined
as the projection of the electron momentum density (EMD)ρ(p) in the direction of the
scattering vector:

J (q) =
∫
pxpy

ρ(p) dpx dpy. (3)

In the momentum space,ρ(p) is given by

ρHF/KS(p) =
∑
µ,ν,g

P
µ,ν,g
HF/KSχ

0∗
µ (p)χ

g
ν (p) (4)

whereχ0
µ(p) andχgν (p) are the Fourier transformations ofχ0

µ(r) andχgν (r):

χ(p) =
∫
χ(r)e−ip·r dr. (5)

Finally, the directional Compton profile is expressed as

JHF/KS(q) =
∑
µ,ν,g

P
µ,ν,g
HF/KS

∫
pxpy

χ0∗
µ (p)χ

g
ν (p) dpx dpy (6)

and the reciprocal form factorB(z) is deduced by Fourier transformation ofJ (q).
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In order to obtain the average Compton profile, we first integrate the electronic density
analytically:

ρ̄HF/KS(p) =
∑
µ,ν,g

P
µ,ν,g
HF/KS

1

4π

∫ π

θ=0

∫ 2π

ϕ=0
χ0∗
µ
(p)χgν (p) sinθ dθ dϕ (7)

over the spherical(θ, ϕ) coordinates corresponding to thepz-direction. Then the average
Compton profile is obtained numerically by means of the following integration:

J̄ (q) =
∫ ∞
p=q

ρ̄(p)2πp dp. (8)

3.2. Polarizability and related functions

The polarizability represents the linear response of the electric dipole of a system in an
electric field. In the electric dipole Hamiltonian gauge, its dynamic expression which is
explicitly given by the formulas 8.45 and 8.46 of reference [46] is written as

α(ω) =
∑
n

fn

[
1E2

n − ω2

(1E2
n − ω2)2+ ω202

n

+ i0nω

(1E2
n − ω2)2+ ω202

n

]
(9)

where fn, 1En and ω are oscillator strengths, transition energies and the electric field
frequency, respectively, and 1/0n corresponds to decay times introduced to represent the
natural radiative relaxation of the levels and replaces the positive infinitesimal parameterη

in the mathematical expression for the second-order scattering amplitudeα(ω) [47]. In the
following, every0n is equal to one small arbitrary01 value which leads to peak widths
qualitatively comparable with those obtained for other cubic systems [48] and which avoids
the poles problem (see also the Padé approximant method in reference [49]). In order to
calculate this expression, equation (9), which generally converges slowly with the number of
excited states (n), the uncoupled Hartree–Fock (UCHF) or uncoupled KS (UCKS) methods
already described in reference [36] are used. In these methods,1En andfn are given by

1En = εkj − εki (10)

and

fn = 2

3
(εkj − εki )〈ϕki |r|ϕkj 〉〈ϕkj |r|ϕki 〉. (11)

The sum overn in (9) is replaced by a sum over the occupied (i) and virtual (j ) crystalline
orbitals and overk with a geometrical weight�(k). The real part of the polarizability is
therefore given by the following expression:

αuv(ω) =
∑
k

�(k)
∑
i,j

2(εkj − εki )
〈ϕki |u|ϕkj 〉〈ϕkj |v|ϕki 〉
(εkj − εki )2− ω2

(12)

with u, v = x, y or z.
This relation is established from the following three approximations:

(i) the excited statesn are monoexcitations from occupiedϕki to unoccupiedϕkj
crystalline orbitals at eachk-point;

(ii) vertical transition energies between the ground state and the excited state are equal
to the differences between eigenvalues,εkj − εki , thus allowing us to neglect the exchange
and Coulomb integrals;

(iii) interactions between monoexcitations by the unperturbed Hamiltonian are omitted
(〈ϕk′i ′ → ϕk

′
j ′ |Ĥ0|ϕki → ϕkj 〉 = 0).
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These approximations allow us to obtain simple analytical formulas for the real and
imaginary parts of theα(ω) and without doing any integration overω according to the
Kramers–Kr̈onig [30, 31, 46, 50] transformations.

Related functions such as thedielectric constantandenergy loss function(ELF) can be
deduced fromα(ω). For non-ionic systems like diamond and cBN, the frequency-dependent
dielectric constantε(ω) is related to the dynamic polarizability [30] by the relations

ε(ω)− 1

ε(ω)+ 2
= 4πN

3
α(ω) ε(ω) =

(
1+ 8πN

3
α(ω)

)/(
1− 4πN

3
α(ω)

)
(13)

whereN is the number of atoms per unit volume. For these systems and for optical
frequencies, the dielectric constantε(ω) is equal to the optical oneε∞(ω) for which there
is only an electronic contribution.

Moreover, the energy loss function, which is related to the interaction between an
incident electron beam and the plasmon of the crystal [31, 33, 34], is obtained fromε(ω)

via the relation

ELF= −Im

[
1

ε(ω)

]
. (14)

4. Results

Before reporting the calculations of the Compton profiles and polarizabilities of diamond
and cBN, physical properties depending on the total energy have been calculated with the
computational conditions described in section 2; these are given in table 1.

Table 1. The lattice parametera (in Å), bulk modulusB (in GPa), binding energy BE (in
Hartree), transverse optical frequenciesνTO (in THz) and indirect and direct gaps1E (in eV)
of the band structure calculated at the HF, LDA and GGA levels.

Diamond cBN

HF LDA GGA Experiment∗ HF LDA GGA Experiment∗

a 3.574a 3.560b 3.600b 3.560 3.619a 3.600b 3.640b 3.615
B 476a 447b 416b 443 416a 382b 360b 367
BE 0.396a 0.704b 0.561b 0.555 0.354a 0.609b 0.505b 0.498
νTO 44.6a — — 39.9 33.9a — — 31.6
1Eind 12.1a 4.0c 4.0c 5.4d 13.5a 4.3c 4.4c 6.0e: 6.4f

1Edir 13.8a 5.3c 5.6c 7.3g 18.9a 8.6c 8.8c 14.5h

∗ These experimental values ofa, B, BE andνTO are given in reference [22].
a Reference [22].
b Reference [40].
c This work.
d Reference [51].
e Reference [60].
f Reference [61].
g Reference [59].
h Reference [62].

The results given in table 1 allow us to make the following comments.

(i) As is already known, the HF calculations overestimate the lattice parameter. The
electron correlation effects are opposite according to the two models: the GGA leads to the
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same conclusion as the HF calculations while the LDA underestimates (as expected) the
lattice constant, except for diamond where the perfect agreement is fortuitous.

(ii) The bulk modulus (B) is overestimated as is the lattice parameter in the HF
approximation while the correlation effect significantly improved the agreement ofB with
the experimental result.

(iii) The binding energy is well reproduced by the GGA and overestimated by the LDA
whereas the HF method underestimates it because the correlation energy is entirely omitted.

(iv) DFT greatly reduces the gap with respect to HF theory with the same trend, whatever
the exchange potential.

These results also show that the 6-21G∗ basis set with an additional d-like polarization
function is of good quality since the calculated properties are fully in agreement with
experiment. This conclusion is confirmed for the electronic structure of cBN from the
comparison of calculated and experimental charge densities and structure factors [26].

Table 2. Average Compton profilesJ (q) calculated at the HF and KS (GGA) levels.q is the
electron momentum (in au).

C (diamond) cBN

q HF KS (GGA) Experimenta HF KS (GGA) Experimentb

0.0 4.30 4.31 4.17 4.25 4.26 4.08± 0.08
0.1 4.28 4.29 4.17 4.23 4.24 4.05
0.2 4.23 4.23 4.11 4.18 4.19 4.00
0.3 4.13 4.14 4.01 4.09 4.10 3.98
0.4 4.01 4.01 3.88 3.96 3.98 3.91
0.5 3.85 3.85 3.75 3.80 3.81 3.70
0.6 3.65 3.66 3.57 3.61 3.62 3.50
0.7 3.43 3.43 3.35 3.38 3.38 3.24
0.8 3.17 3.17 3.10 3.12 3.12 2.93
0.9 2.88 2.88 2.86 2.84 2.84 2.64
1.0 2.57 2.57 2.58 2.54 2.53 2.39± 0.05
1.2 1.90 1.88 1.88 1.89 1.87 1.86
1.4 1.27 1.25 1.33 1.31 1.28 1.45
1.6 0.87 0.86 0.90 0.92 0.91 1.13
1.8 0.66 0.67 0.72 0.71 0.71 0.86
2.0 0.56 0.57 0.62 0.59 0.60 0.68± 0.02
2.5 0.41 0.42 0.46 0.43 0.43 0.45
3.0 0.32 0.32 0.35 0.32 0.32 0.35
4.0 0.19 0.19 0.21 0.19 0.19
5.0 0.11 0.11 0.12 0.11 0.11
8.0 0.02 0.02 0.02 0.02 0.02

a Reference [5].
b Reference [6].

4.1. Compton profiles

The average and directional Compton profiles (CPs) and the anisotropy of the Compton
profiles calculated at the HF and KS levels are given in tables 2 and 3, and figure 1,
respectively. All of the CPs are normalized to 12, which represents the number of electrons
in the unit cell. Experimental average CPs are also given for comparison. Not all of the
values are reported, for reasons of clarity:
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Table 3. Directional Compton profilesJ (q) calculated at the KS (GGA) level.q is the electron
momentum (in au).

C (diamond) cBN

q [100] [110] [111] [100] [110] [111]

0.0 4.34 4.39 4.18 4.27 4.30 4.19
0.1 4.33 4.37 4.16 4.26 4.28 4.18
0.2 4.28 4.30 4.12 4.22 4.23 4.13
0.3 4.20 4.16 4.07 4.15 4.12 4.06
0.4 4.08 3.97 4.00 4.04 3.97 3.96
0.5 3.93 3.78 3.89 3.89 3.78 3.82
0.6 3.72 3.57 3.73 3.68 3.55 3.65
0.7 3.45 3.33 3.53 3.41 3.29 3.44
0.8 3.13 3.07 3.27 3.10 3.04 3.18
0.9 2.79 2.84 2.96 2.77 2.83 2.88
1.0 2.43 2.62 2.60 2.43 2.60 2.54
1.1 2.09 2.36 2.23 2.09 2.31 2.20
1.2 1.77 2.01 1.88 1.78 1.97 1.88
1.3 1.48 1.61 1.56 1.50 1.61 1.58
1.4 1.24 1.26 1.29 1.27 1.29 1.33
1.5 1.04 0.99 1.06 1.08 1.05 1.11
1.6 0.89 0.83 0.89 0.94 0.88 0.94
1.7 0.78 0.72 0.76 0.83 0.76 0.81
1.8 0.70 0.65 0.66 0.74 0.69 0.71
1.9 0.64 0.60 0.60 0.68 0.63 0.64
2.0 0.59 0.56 0.54 0.62 0.59 0.58
2.5 0.43 0.43 0.40 0.44 0.45 0.42
3.0 0.32 0.33 0.33 0.33 0.33 0.33
4.0 0.19 0.19 0.19 0.19 0.19 0.19
5.0 0.11 0.11 0.11 0.11 0.11 0.11
8.0 0.02 0.02 0.02 0.02 0.02 0.02

(i) the KS values obtained at the LDA and GGA levels are identical;
(ii) the difference between the HF and KS values (table 2) is very small and not

significant. This result is confirmed with the directional CPs and, therefore, the values
are reported only for the KS (GGA) model.

The basis set effect must be underlined because it also determines the accuracy of the
calculations. In the case of cBN, the 7-311G∗ basis set already documented in the hBN
study [38] was used after accommodation to the experimental cubic geometry. It leads to
directional CP values very close to those obtained with the 6-21G∗ set, making the CP
anisotropiesJ100− J111 andJ100− J110 higher by 0.005 and 0.01 au than those calculated
with the 6-21G∗ set in the valence region (q < 0.4 au). This effect is very small as for
hBN and shows that the quality of the 6-21G∗ basis set is satisfactory in order to compare
the EMD of diamond and cBN.

4.1.1. Comparison with experiment and other calculations.To our knowledge, the
experimental data for CPs are not numerous and are twenty five years old for the more
recently discovered ones. For diamond, average and directional CPs have been measured
by Weiss and Phillips [4] and by Reed and Eisenberger [5] using x-rays and 160 keVγ -rays,
respectively. Only these latter more accurate CPs are reported in table 2 and figure 1 for
comparison. For cBN, the data of Weiss [6] obtained from measurements on polycrystalline
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(a)

Figure 1. The Compton profile anisotropiesJ100− J110 andJ100− J111 of diamond (a) and of
cBN (b). Full and dotted lines correspond to our present calculations and to those of Dovesi
et al [21] performed using a minimal STO-3G basis set, respectively. Dashed lines correspond
to the SCF-HF calculations of Euwemaet al [11, 19]. Circles (a) represent the experimental
results of Reed and Eisenberger [5].

samples are available. As in all cases, the theoretical CPs are larger than the experimental
ones. This observation is confirmed by the SCF-HF calculations of Wepferet al [11], of
Seth and Ellis [12] and of Dovesiet al [21], and by the model of a one-electron density
matrix containing only interactions between nearest neighbours developed by Schülke and
Kramer [14] for diamond, and by the SCF-HF calculations of Euwemaet al [19] and of
Dovesi et al [21] for cBN. Generally speaking, the agreement between our calculations
and experiment is highly satisfactory. It is better for diamond than for cBN, and for the
directional CPs than for the average CPs.

Figure 1(a) shows that the best agreement between theory and experiment is obtained
with our calculations. However, theJ100−J110 anisotropy is reproduced better in the region
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(b)

Figure 1. (Continued)

of the smallest values of the momentum by the calculations of Wepferet al [11] or of Seth
and Ellis [12], but this improvement remains confined to this region only. The comparison
between our calculations and those of Dovesiet al [21] carried out with the same method is
very instructive because it shows the improvement of CRYSTAL during these fifteen years.
The use of more severe tolerances, the use of morek-points in the irreducible part of the
first Brillouin zone and above all the possibility of using more extended basis sets (6-21G∗

instead of STO-3G) explains why the improvement of the calculations is significant for
diamond, large for cBN (figure 1(b)) and can be considerable for hBN where the STO-3G
set leads to poor results [38]. With these conclusions and taking into account the closeness
of the calculations of Euwemaet al [19] and of Dovesiet al [21] and the absence of
experimental data, it can be concluded, as for diamond, that our CP anisotropies of cBN are
more reliable. In particular, theJ100− J110 anisotropy becomes similar to that of diamond
since it presents a negative part in the region of the smallest values of the momentum.
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Several reasons can be invoked to explain why the theoretical CPs are more peaked at
low momenta than the experimental data.

(i) Our theoretical results are not convolved since the authors do not give the values of
the residual instrumental function (RIF): in these conditions, the difference is pessimistic
since, for example, taking RIF= 0.15 au [14] decreases the theoretical value ofJ by about
0.5%.

(ii) From a theoretical point of view, two important factors must be considered to
explain the remaining difference. The first one is associated with the quality of the basis
set (figure 1(a)). The second one concerns the correlation effect of which the true value
cannot be deduced from the comparison of HF and (standard) KS calculations. Within DFT,
general ground-state expectation values (like that of the electron momentum density) can
only be determined formally correctly by the inclusion of a correction term (not done in
this work) which would then lead to a noticeable difference between the CPs at the HF
and (correlation-corrected) KS levels. However, electron correlation in the ground state is
an important aspect in Compton scattering which is still awaiting a definitive theoretical
treatment.

(iii) Finally, it can be noted that using C or cBN single crystals in place of diamond dust
[5] or the cBN polycrystalline sample [6] should contribute to improving the agreement.

4.1.2. Conclusions. Homogeneous calculations of CPs have been presented. They lead
to a better agreement with experiment than the other SCF-HF calculations mentioned. The
CP anisotropy curves are similar for diamond and cBN. This result is not surprising since
the two compounds are isoelectronic, and they have the same structure with close lattice
parameters and slightly different space-group symmetries. However, the magnitude of the
J100− J111 anisotropy is higher for diamond than for cBN and must be correlated with the
different characters of the chemical bonds. Finally, we note that an excellent agreement has
recently been obtained between our calculations and experiment for hBN [38]. For diamond
and cBN the agreement is less good but it could be improved with new experiments taking
advantage of the technical progress and reporting measured total CPs without separating the
valence part from the core, which can induce additional errors when the core is deformed
by the crystal-field effect.

4.2. Polarizability and related functions

4.2.1. Static polarizability and the dielectric constant.The static polarizability values per
unit cell obtained from expression (12) withω = 0 are given in table 4 for diamond and cBN
at both the HF and KS (GGA) levels of calculation. KS crystalline orbitals at the LDA and
GGA levels lead, as for CPs, to similar polarizability values (1.66Å3 for diamond, 1.32Å3

for cBN). Moreover they are in good agreement with the other results: 1.64Å3 [51] and
1.51 Å3 [32] for diamond and cBN respectively, while the HF values are too small (1.04
Å3 for diamond, 0.78Å3 for cBN). To understand this difference, it is necessary to consider
the numerator and denominator contributions to the polarizability calculation separately.

(i) The denominator in (12) is related to the direct gap which is the smallestεki to εkj
vertical transition, obtained at the0 point for diamond and cBN (table 1). With the HF
method, this gap is systematically overestimated as mentioned by Orlandoet al [22] (for
diamond, the factor is 2), while the KS method underestimates it less. This trend is general
for DFT calculations [50, 52, 53] and is due to the fact that the DFT exchange potentials
do not contain exchange singularity [54].
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Table 4. The static polarizabilityα (Å3) per unit cell, dielectric constant (ε) and plasmon energy
Ep (eV) calculated at the HF and KS (GGA) levels for diamond and cBN.

Diamond cBN

HF GGA Others HF GGA Others∑
n fn 13.14 8.97 11.64 8.16

α 1.04 1.66 1.64∗ 0.78 1.32 1.51∗

ε 2.89 5.86 5.7a 2.16 3.63 4.46b

Ep 52.3 36.4 33.6c 50.3 35.4 29.0d

33.3e 30.4f

32.0d

∗ Obtained fromε by means of equation (13).
a Reference [51].
b Reference [32].
c Reference [63].
d Reference [34].
e Reference [64].
f Reference [33].

(ii) The values of the sum (
∑

n fn) over the oscillator strengths (the numerator of (12))
which must be the values of the numberne of electrons per cell are underestimated when
calculated at the KS level (8.98 and 8.16 for diamond and cBN respectively instead of
12). In contrast, they are close to the theoretical values obtained using the HF method
(13.14 and 11.64). Therefore, if UCKS calculations of the static polarizability lead to a
better agreement with experiment, this results from a balance of the errors associated with
the evaluation of the numerator and the denominator of equation (12). At the HF level,
the calculatedα-values are too small even if the oscillator strengthsfn obey the Thomas–
Reiche–Kuhn formula

∑
n fn = ne within an error bar smaller than 10%; this is due to the

overestimation of the gap value. A scissors operator method which consists in shifting the
calculated gap (see reference [48] for example) in order to obtain the experimental one can
be applied to improve the UCHF results. This leads toα = 1.38 Å3 for diamond [36] and
0.93 Å3 for cBN (1.04Å3 and 0.78Å3 respectively without correction), which is still too
small compared to the UCKS and experimental values (table 4).

Our static dielectric constantε-values are deduced from the calculated polarizabilities
by means of the Clausius–Mossotti relation (13). They are reported in table 4. A better
agreement with experiment is obtained when they are calculated at the KS level for the
reasons previously indicated for the polarizability.

4.2.2. The dynamic dielectric constant.In order to calculate optical properties of solids,
which can be obtained from reflectance measurements, the electric field frequency has to
be taken into account. Equations (9), (10) and (11) allow us to calculate the dynamic
polarizability and to deduce the optical dielectric constant. In figure 2, the variations of the
real (εR) and imaginary (εI ) parts of the dielectric constant of diamond and cBN, calculated
at the KS level, are plotted in the range ¯hω = 0–15 eV and for a decay time 1/01 equal
to 200 au. This01 value (0.005) has also been used by Eremetset al [32] to simulate the
dispersion of the refractive index of cBN.
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Figure 2. The real (full lines) and imaginary (dotted lines) parts of the dielectric constant
calculated at the KS (GGA) level for diamond (a) and cBN (b).

The first lower-energy peak of theεR(ω) spectra appears at such anω-value that the
real part of the atomic polarizability is equal to 3/(4πN) according to equation (13) (this is
the condition for a polarization catastrophe [31]); theαR(ω) values per unit cell deduced are
2.69 Å3 and 2.82Å3 for diamond and cBN respectively. The corresponding energy value
h̄ω is close to the direct gap (5.5 and 8.7 eV for diamond and cBN respectively) sinceαR(ω)

remains practically constant below the first resonance and only begins to increase rapidly
near to it. TheεI (ω) spectrum is also related to the polarizability and to the scattering
cross-section. As forεR(ω), the first peaks appear at energy values close to the gap, then at
lower frequencies for diamond. But it is interesting to notice that the diamond spectrum is
much more spread out than that of cBN. This is why the static polarizabilities or dielectric
constants of diamond and cBN are close, even if the cBN gap is twice that of diamond.
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Figure 3. The energy loss function at the KS (GGA) level versus the energy of an incident
electron beam (in eV) for diamond (a) and cBN (b). The insets give the calculated (calc.) and
experimental (exp.) spectra corresponding to the interesting energy ranges (the experimental
ones come from reference [34] for diamond and reference [33] for cBN).
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4.2.3. The energy loss function (ELF).In figure 3, the energy loss function deduced from
the dynamic dielectric constant (equation (14)) calculated at the KS level has been plotted
for diamond and cBN. For both compounds, a broad band including two high peaks appears
in the low-energy range. The highest peak, which leads to the plasmon energyEp = 36.4 eV
for diamond and 35.4 eV for cBN, was observed by Hosoiet al [34] at 29 eV and 32 eV,
respectively. Other experimental values are given in table 4. It follows that theseσ -plasmon
energies obtained at the KS level are slightly too large compared with the experimental ones,
while the unreported HF values are worse. The narrow bands observed at larger frequencies
are due to core-electron excitations. The corresponding energies are 182 eV (B) and 386 eV
(N) for cBN, and 277 eV for diamond. They can be compared with the experimental values:
195 eV [33, 34] for B, 405 eV [34] and 409 eV [33] for N, and 291 eV [34] and 294 eV
[35] for C, from the spectra of the K edge of the cBN and diamond compounds. Our
energy values obtained at the KS level are smaller than the experimental ones whereas the
HF values are still much too large. It is interesting to notice that the B and C bands given
in figure 3 for cBN and diamond show in fact a second peak at 16 eV and 11 eV above
the first one, respectively. This peak was also observed at 18 eV for both compounds by
Gonnet [33] and at 12 eV by Egerton and Whelan [35] for diamond. It seems to be a
typical feature of the zinc-blende structure, as also mentioned by McKenzieet al [55]. The
experimental data reported in figure 3 show ELF behaviour similar to what we found, in
spite of slight energy shifts.

5. Discussion and concluding remarks

New first-principles calculations of the crystalline wave function of diamond and cBN
described with a 6-21G∗ all-electron basis set have been presented for the LCAO DFT
method with a very good degree of accuracy thanks to the recent improvements introduced
into the CRYSTAL program. The ground-state electronic structure deduced from average
and directional CPs and the polarizability and its related functions have been reported.
Compared to the HF results, the part of the correlation effect taken into account in the
LCAO-DFT calculation can be very different according to whether just the ground-state
property, namely the Compton profile, or the polarizability related also to the excited states
is taken into consideration. For the Compton profile and its related functions (the electron
momentum density and reciprocal form factor), this effect is small, while it greatly modifies
the polarizability values and related functions via the gap value.

Nowadays, the ground-state electronic structures of diamond and cBN are well known
from theoretical and experimental studies of x-ray scattering factors, the charge density
and directional CPs. In the case of diamond, the studies of Takamaet al [3], Zunger and
Freeman [13], Pattisonet al [16], Spackman [17] and Luet al [18], interpreting the data
of Reed and Eisenberger [5] and of Seth and Ellis [12], are considered as definitive. In
the same way, we will quote the papers of Willet al [7], Eichhornet al [8], Zunger and
Freeman [20], Xu and Ching [23], Bross and Bader [25] and Lichanotet al [26] for cBN.
From these investigations, the main differences between the two electronic distributions can
be summarized as follows: the bonding between two nearest-neighbour atoms is symmetric
in diamond (purely covalent bonds) and non-symmetric in cBN where there is an electron
charge transfer from boron to nitrogen (semi-covalent bonds). More precisely:

(i) in diamond, a monotonic decrease of the total charge density from the atomic
positions to the point midway between the two atoms [22] is observed, whereas in silicon,
for example, there is a large plateau of nearly constant density; this makes the bond charge
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Figure 4. Directional reciprocal form factorsB(z). The dotted, dashed and full lines are
associated with the [100], [110] and [111] directions, respectively. The abscissa gives the
normalized distancez/a wherea is the lattice parameter. (a) Diamond. (b) cBN. The arrows
indicate the reference values ofz/a (1/

√
2 and 1) along the [110] and [100] directions.

of silicon much more diffuse than that of diamond where the lack of core p electrons allows
the valence electrons to get nearer to the nuclei;

(ii) in cBN, the charge transfer from B to N localizes the bond charge nearer to the
nitrogen but close to the midpoint between B and N [26], and the charge-density maximum
of cBN is only slightly lower than that of diamond.

Examination of table 2 reveals that the CP values of diamond and cBN are close, but
slightly higher for diamond than for cBN in the region of small values of the momentum
(q < 1 au). This result is confirmed when the directional CPs are examined except for the
[111] direction of the chemical bond at the smallestq-values (q < 0.3 au) (see table 3). In
consequence, the ‘long-range’J100− J110 anisotropies are practically identical for the two
compounds whereas theJ100− J111 anisotropy, which involves the bond direction, is for
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Figure 5. The reciprocal-form-factor anisotropy versus the normalized distancez/a. The full and
dotted lines are for diamond and cBN, respectively. (a)B100−B111 anisotropy; (b)B100−B110

anisotropy; (c)B100(diamond)− B100(cBN) versusz (in au).

cBN half that for diamond. This result confirms the conclusions drawn for the direct space
from the studies of the charge densityρ(r).

In order to facilitate the identification of bonding features in the direct space, a reciprocal
form factor or autocorrelation functionB(r) is introduced as the Fourier transformation
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of the Compton profile. By using a 1D Fourier transform,B(z) = ∫
J (pz)e−ipzz dpz

is calculated along the three crystallographic axes and theB100(z), B110(z) and B111(z)

values are reported in figure 4 versus the normalized distancez/a. Diamond and cBN are
semiconductors with filled bands and, for such crystals,B(z) should have a zero value at
all lattice translational vector points due to the long-range AO overlap of the neighbour
unit cells [56]. In all cases, our theoretical curves (figure 4) cross thez/a axis at the
appropriate values, providing a check on the accuracy and reliability of the wave functions.
The negative parts ofB(z) are attributable to the effects of antibonding interactions arising
from the second-nearest-neighbour overlap. Figure 4 shows that these effects are similar
in diamond and cBN and take place up to 4Å. However, the largest difference between
the diamond and cBN is given by theB111(z) curves which exhibit a significantly stronger
anisotropy in the diamond case. In order to illustrate and compare the anisotropies of the
chemical bonds in diamond and cBN, the treatment by Pattisonet al [16] of diamond is
adopted here. The differencesB100−B111 andB100−B110 should reveal the strongest effects
of the bond anisotropy and antibonding interactions, respectively, if the [100] direction acts
as a neutral direction. This assumption is valid for both compounds since no special feature
is observed in theB100(diamond)–B100(cBN) curve (figure 5(c)) which is close to zero when
z is greater than 3 au. For both compounds, theB-anisotropy shows prominent features
at the nearest first- and second-neighbour distances. At the bond length(z/a = √3/4),
the B100− B111 curve indicates that the bond anisotropy is stronger for diamond than for
cBN. TheB100− B110 curves which are close for the two compounds are dominated by a
non-bonding interaction between the orbitals which form neighbouring bonds in the lattice.
It takes place at a distance ofz/a = 1/

√
2 between second-nearest neighbours and it results

from the diffuse character of the bond charge shown in the ECHD maps [22]. Finally, the
electron momentum density and related properties of diamond and cBN are rather close,
the only difference being the stronger bond anisotropy in diamond. This result seems
attributable simply to the different characters of the bonds, namely that the sp3 orbitals are
more localized near to the N nuclei because of the charge transfer between B and N. In
fact, the comparison of CPs for the two compounds is rather easy because it removes the
geometry and valence electron configuration effects, since the lattice parameters are very
close and the valence electrons belong to the same shell. These two factors are decisive
in underlining the main differences between theB(z) anisotropies in diamond and silicon,
which are dominated in this latter compound by the ‘long-range’ orbital overlap [16, 56].

For the polarizability property, which in addition depends on the description of the
excited states, the calculations for diamond and cBN crystals found in the literature are not
numerous, unlike the case for experimental results on related functions like the dielectric
constant and the energy loss function. Effectively, the calculations are strongly gap
dependent for these semiconductors and the electronic correlation cannot be neglected. Since
the perturbation theory of the electronic correlation in periodic systems is not available, as in
the study of infinite polyenes by Suhai [57], the DFT approximation has been used to partly
take this into account. Using our uncoupled method with the KS crystalline orbitals, the
polarizability values obtained for diamond and cBN are relatively close to the experimental
ones.

Moreover, cBN and diamond have spectral similarities not only in the plasmon loss
spectra but also in the core-edge spectra (as also mentioned by Hosoiet al [34]), the sole
significant difference being as regards the energy positions of the core-electron excitations.
It is noted that the difference between silicon and diamond, though they belong to the same
chemical family, is larger than that between diamond and cBN as regards the polarizability,
dielectric constant and plasmon energy (ε = 8.4 andEp = 20 eV from our DFT calculations
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for Si [36]). This is probably due to the small gap of Si, with a narrowε-spectrum. However,
our results concerning the core-edge spectra must be moderated by the following remark:
the electric dipole approximation no longer holds for the range of energy in which these
peaks appear and the behaviour of the core-edge spectra could be slightly modified [58].

6. General conclusions

In this work, the Compton profiles and polarizability and their related functions for diamond
and cBN have been studied at two levels of calculation, according to the LCAO-HF and
LCAO-DFT methods used. Compton profiles and reciprocal form factors, which depend on
the electron momentum densities, need only the knowledge of the ground state. However,
only a part of the electronic correlation effect is taken into account with the LCAO-DFT
method: for these properties, it is small for both compounds. The polarizability and related
functions (the dielectric constant and energy loss function) are gap dependent and are much
more sensitive to the electron correlation effect. In fact, the HF or KS methods used to
calculate them lead to overestimation and underestimation, respectively. Better results are
obtained with DFT.

Because of their similar electronic and geometric structures, diamond and cBN have
similar Compton profiles. However, the semi-covalent character of cBN is revealed by the
smaller anisotropy of the reciprocal form factors relating to the bond direction. In contrast,
different values of the polarizabilities of diamond and cBN were expected because cBN has
a direct gap twice as large as the diamond one with the same theoretical value (ne = 12) of
the sum of the oscillator strengths; but in fact, the polarizability values are close, showing
the importance of the band widths of theε(ω) spectra.

Finally, Compton profiles, the polarizability and their related properties are
complementary probes allowing one to observe small differences between the electronic
structures of similar compounds. However, progress must be made in describing the excited
states of solids.
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